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INTRODUCTION

Cone beam computed tomography (CT) based on non-
planar orbits has been an active area of research toward
the goal of producing an exact volumetric reconstruction.
To date, most reconstruction algorithms for non-planar
orbits have been based on the theoretical framework of
Tuy[1], Smith [2] and Grangeat[3]. Of all the
investigated non-planar orbits, the helical scanning
geometry is most promising for clinical application since
it is easy to implement and natural for volume scanning
of the body.

Currently, multi-row detectors with only a few rows (e.g.
four) are widely used in clinical helical CT, and the
reconstruction algorithms involved differ only slightly
from the traditional fan beam methods. This
approximation produces minimal artifact in the
reconstruction because the cone angle is very small. In
order to increase the volume scanning speed and reduce
motion artifacts, and to make more efficient use of the x-
ray tube output, more and more detector rows will be
used. In the near future a point will be reached where the
z-divergence of the beam will become non-negligible.
There is a need, therefore, to develop efficient
reconstruction algorithms which account properly for the
cone beam scanning geometry.

Some approximate algorithms for helical cone beam
tomography have been developed[4,5,6]. They are
efficient and provide good temporal resolution because
only full scan or half scan data are used to reconstruct a
slice and the ramp filtered data remain bounded in the z
direction, keeping the computational intensity low.  They
are approximate in nature however, and will produce
artifacts when the cone angle is increased.

Practical exact helical cone beam tomography algorithms
are made possible by the discovery that only the
truncated data within the region on the detector bounded
by the projections of the adjacent upper and lower turns
of the helix are required to obtain an exact reconstruction
[7,8], not the full data set as utilized in the theory
developed by Tuy, Smith and Grangeat. Quasi-exact
algorithms outperform approximate methods in terms of
reconstructed image quality, yet some researchers have
argued that exact algorithms have the disadvantages of
inferior temporal resolution and increased computational
intensity. We show that an exact algorithm can deliver
computational efficiency and temporal resolution
comparable to that achieved by approximate methods.
With continued research in this area, the advantages of

exact over approximate algorithms will become
increasingly evident.

Exact helical cone beam tomography algorithms can be
categorized as addressing the short object problem or the
long object problem. For the short object problem, the
axial extent of the helix is sufficient to cover the entire
object, providing adequate data for a comparatively
simple solution. For the more complex long object
problem, the helix extends only slightly beyond the ROI.
It is much more difficult to solve than the short object
problem due to the data contamination issue. From a
clinical standpoint, a solution to the long object problem
is required since only a portion of the patient should be
scanned to provide accurate images of the finite volume
of interest. Tam[7] first provided a solution for the long
object problem, but his algorithm required two circular
orbits at the end of helix which is undesirable in practice.
Several exact algorithms for the long object problem
have been developed which do not require the circular
orbits, but reconstruct the ROI using only the helical
orbit data[9,10,11].

In this paper, we present a new solution to the long
object problem using helical data only. It is based on the
method developed by Kudo, Noo and Defrise[8]. We
invoke the concept of accessory paths with upper and
lower virtual detectors having infinite axial extent. We
show that our approach has the advantages of ease of
implementation, good temporal resolution and
computational efficiency. The algorithm possesses the
filtered backprojection structure, which is very desirable
for practical implementation.

ALGORITHM

We propose an algorithm to solve the long object
problem for helical cone beam tomography using
accessory paths with virtual detectors of infinite axial
extent.

Fig. 1 illustrates the data acquisition geometry. The
source path )(θa

�

is a short helical segment of pitch hπ2
and radius R defined by (1), containing a primary helix
(the solid path), a top accessory helix (top dotted path)
and a bottom accessory helix (bottom dotted path)
around a long object ),,( zyxf (the cylinder).
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where θ   is the rotation angle of the helix.



The detector is normalized to the iso-center and its
coordinate system is defined by unit vectors 

uξ
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and
vξ
�

:
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is parallel to the helix tangent.

Our objective is to reconstruct a slice (the shaded ellipse
in Fig. 1) from the data collected on the source helix.
From short object problem theory, we know that it is
impossible to exactly reconstruct the slice without
scanning the whole object due to the data contamination
problem.

Our approach employs three different types of detector.
For the data collected from the primary path, we have a
masked detector (Fig. 2b) with the top and bottom
boundaries given by[8]:
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where ( ), rr vu  is the rotated coordinate system defined

by:

ηη sincos vuur −= (7)
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so that ru  is horizontal.

For the data collected from the top accessory path, we
use a detector (Fig. 2a) with no boundary on the top and
with a boundary at the bottom defined by (6) in order to
capture the entire upper portion of the object. For the
data collected from the bottom accessory path, we use a
detector (Fig. 2c) unbounded at the bottom with a
boundary at the top defined by (5) in order to capture the
entire lower portion of the object.

Before explaining our algorithm, we revisit an important
and remarkable property of the filtered masked
projection discovered by Kudo et al. [8]. Namely, the
result of filtering the masked data can be represented as:
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The bounded term results from ramp filtering the data
within the mask and the unbounded term results from the
unbounded filtering of the boundary data. This property
is the key to an understanding of our algorithm.
According to the above property, we know that for the
central detector (the standard PI detector, Fig. 2b), data

on both boundaries will contribute to the unbounded part
of the filtering result, but for the upper detector (Fig. 2a),
only the data on the bottom boundary will contribute to
the unbounded term and for the lower detector (Fig. 2c),
only the data on the top boundary will contribute to the
unbounded term.

The following conditions on the primary path and
accessory paths must be met in order for our algorithm to
succeed. The primary path must be long enough so that
the ramp filtered part of the projections collected from
the accessory paths do not contribute to the reconstructed
slice. The accessory paths (the dotted paths in Fig. 1)

must be of length ))arcsin(2(
R

r
+π at both ends of the

primary path, where r is the FOV radius. When these
conditions are met, we can obtain the Radon derivatives
needed to reconstruct every point in the slice based on
the whole object. A typical data combination is shown in
Fig. 3. Notice that for points on the accessory paths, one
end of the source rays’ envelope opens to infinity
because we employ a virtual detector of infinite extent
above and below the slice. But remember, the infinite
detector is virtual and the unlimited data is not available
in practice. Fortunately, because of the filtering property
we mentioned earlier, only the data on the bottom
boundary of the upper virtual detector and the data on the
top boundary of the lower virtual detector will become
unbounded after filtering and contribute to the
reconstruction of the slice. The ramp filtered portion of
the filtered projection from the accessory paths will not
contribute to the reconstructed slice. Therefore, only the
data on the boundaries of the upper and lower virtual
detectors are required for exact reconstruction of the
slice. These data are available from the primary path
itself due to the property that the integral over a PI line
can be accessed from either of the two source points that
define the PI line (Fig. 4).  Thus, the slice of interest can
be reconstructed from the primary path data alone.

Explicitly, we can reconstruct the slice using the
following three steps:

• Fully filter the projections (bounded term +
unbounded term) obtained from the primary
path and backproject the filtered results into the
slice.

• Obtain the boundary data for the accessory
paths, do the filtering (unbounded term only)
and backproject the result into the slice.

• Add these two contributions to get a fully
reconstructed slice.

If we need to reconstruct an ROI in a long object, we can
reconstruct every slice in the ROI using the above
approach.
Our algorithm has the following advantages:
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• It is local. Every filtered projection contributes
only to a few slices and it is not necessary to
extend it to cover the entire ROI. This property
makes the computational efficiency comparable
to the approximate methods.

• It has good temporal resolution:  In order to
fully reconstruct a slice with the parameters
used in medical CT, we require only about one
turn of helical data.

• It is relatively easy to implement, requiring only
slight modifications to the short object
implementation.

• Only helical data is needed.
• It possesses the filtered backprojection

structure.

The algorithm can be made global if the filtered
projection is extended sufficiently to contribute to the
reconstruction of the whole ROI, but this increases the
computational intensity and reduces the temporal
resolution.

The pitch of the accessory paths can vary. Our algorithm
is equivalent to Kudo’s virtual circle algorithm [10]
when the pitch of the accessory paths becomes 0
although our derivation differs from that of Kudo. We
calculate Radon derivatives based on the whole object
while Kudo calculated Radon derivatives based on the
ROI defined by the two virtual circles.

In our implementation we chose the pitch of the
accessory paths to be the same as that of the primary path
making the mask B invariant which results in a single
form of the boundary term. This makes it easier to
localize the reconstruction and to implement the
algorithm than is the case using Kudo’s virtual circle
approach [10].

SIMULATION RESULTS

We reconstructed the 3D Shepp-Logan phantom[12]
(Fig. 5, display window [1.01 1.04]) and a disk
phantom[8] (Fig. 6, display window [0.3 1.7]) to test the
ability of the algorithm to reconstruct low contrast
objects and objects with high frequency components in
the z direction, respectively. We added two
homogeneous cylinders at both ends of the phantoms to
simulate the long objects. As demonstrated in the figures,
both phantoms were reconstructed with satisfactory
results.
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